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Abstract-A generalized analytical solution to the problem of the unidirectional planar freezing at a 
constant temperature of a supercooled aqueous solution of finite extent is presented. This solution is valid for 
both dilute and non-dilute solutions and also at both short and long times. Mathematical approximations 
are made only to the extent that the mass diffusivity is considered to be independent of concentration. Our 
theoretical results compare favorably with the experimental results of other investigators and demonstrate 
that transient non-uniform concentration profiles can exist within the liquid region of systems as freezing 
progresses and that the volumes of the liquid and solid regions can vary non-linearly with time. The extent of 
concentration polarization and the velocity of propagation of the liquid&solid interface are found to be 
functions of the initial degree of supercooling, the mass diffusivity, and the initial size of the system. A 
comparison is also made between our results for freezing in finite domains and the classical similarity results 
for freezing in semi-infinite domains. 

NOMENCLATURE 

area; 
molar concentration; 
diffusion coefficient ; 
latent heat of fusion; 
length ; 
index ; 
temperature; 
time ; 
non-dimensional time (Fourier modulus); 
volume ; 
velocity ; 
apparent molar volume ; 
length ; 
position ; 
non-dimensional position ; 
number of species per molecule. 

Superscripts 

s, solute-fixed frame of reference; 
v, volume-fixed frame of reference. 

Subscripts 

.L freezing ; 

L, 
initial ; 
liquid ; 

S, solid ; 
s, solute or solute-fixed frame of reference; 

W, water ; 

Y, position ; 
‘YI, final. 

INTRODUCTION 

IN MANY common engineering situations, heat transfer 
is accompanied by phase changes and/or compo- 
sitional changes in the conducting medium because of 
chemical reactions occurring within the medium or the 
segregation of material due to changes in phase. 
Analyses of these phenomena usually involve the 

simultaneous solution of heat- and mass-transfer 
equations subject to boundaries whose positions vary 
with time. Examples of such phenomena are the 
melting or solidification of common substances such as 
ice and water, the production of frozen foods, the 
casting and welding of metals during fabrication, 
ablation during spacecraft re-entry, the penetration of 
frost into the earth and the melting of coolant-deficient 
nuclear-reactor fuel elements. Accordingly, many re- 
ferences to moving boundary multi-phase problems 
exist and can be found in the literature surveys of 
Bankoff [l], Muehlbauer and Sunderland [2], Rubin- 
stein [3], Fox [4] and Boley [S]. 

The essential and common features of these systems 
is that an interface exists which separates two regions 
possessing greatly different thermodynamic, chemical, 
and physical properties and that the position of this 
interface is neither fixed in space nor is its motion 
known a priori. For example, let us consider the 
solidification of a finite volume of an aqueous solution 
which upon freezing forms a pure-ice solid from which 
the solute is completely rejected. If this solution has an 
initial uniform composition csi and is at an initial 
uniform temperature T above its initial equilibrium 
freezing temperature Tfi(csi), then the systems will 
remain entirely liquid until the temperature Tsi is 
reached. If we then assume that at this point or at any 
temperature between 7”i and TeuLectic (i.e. supercool- 
ing), that ice nucleates at the outer surfaces of our 
system, the freezing process will begin and solute will 
be rejected by the advancing ice front. Under the 
conditions of local thermodynamic equilibrium, how- 
ever, the temperature at the liquid-solid interface 
will be uniquely related to the composition of the 
liquid at the interface through the liquidus line of the 
solution’s phase diagram. Continued growth of the 
solid phase will therefore depend not only upon the 
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ability to remove the latent heat of fusion and the 
sensible heats of the liquid and solid regions, as is the 

case for pure water when no solutes are present, but 
also upon the ability of the solutes in the liquid phase 

to diffuse away from the interface. thereby permitting 

water to gain access to the pure-ice solid phase. This is 
especially true for aqueous solutions where the ratio of 

the thermal diffusivity of ice to the thermal diffuslvity 

of the remaining liquid is approximately 10 and the 
ratio of the thermal diKusivity to the mass diffusi\ity in 

the liquid is approximately 100. Hence. under certain 
circumstances, the solidification process for rnulticom- 

ponent solutions may be rate-limited by mass-transfer 

considerations, that is, by the ability of the solutes to 
diffuse away from the interface and for the solvent to 

diffuse towards the interface. rather than solely by the 
heat-transfer considerations of whether or riot the 

latent and sensible heats can be removed. 
Because of this coupling of heat- and mass-transfer 

considerations, it is necessary in solving such problems 

to determine the spatial and time dcpendencc of the 
temperature and concentration fields and the manner 
and rate at which the interface will move. It IS therefore 

not surprising to find that only a few exact analytical 
solutions exist, with the most notable being those of 

Neumann (see [6]) and Stefan (see [7]) who con- 

sidered the freezing and melting pure substances 
initially at the fusion temperature. These exact so- 

lutions, however. are characterized by the fact that 
they deal with semi-infinite domain situations having 

similarity solutions. For other problems. however, 

especially those dealing with moving boundaries in 
finite domains, the velocity of the interface is not 

related to time through a similarity variable and either 
numerical (for review, see [8]), or approximate analyti- 

cal (for review. see 191) methods have had to be 
employed. Unfortunately, only Weinbaum and Jiji [9] 
who analyzed the freezing of pure water in a finite 

domain have obtained a solution which is valid over 
the entire domain of time. Most other investigators 

studying the freezing of substances offinite extent have 
limited themselves to a discussion of the transients 

occurring at relatively ‘short’times (e.g. [IO. 111) where 
the long time effects of the finiteness of their systems 

could be neglected. The factors affecting the long time 
behavior of finite domain problems. however. are 
vastly different from the factors affecting the long time 
behavior of semi-infinite domain problems. Whereas 
the velocity of the solid liquid interface will approach 
zero as time approaches infinity for a semi-infinite 
domain situation due to the heat-transfer limitation of 
not being able to remove the sensible and latent heats 
through a solid phase whose thickness approaches 
infinity at long times; the interface velocity for a linltc 
domain situation will approach zero as time ap- 
proaches infinity due to the thermodynamic and mass- 

*,& more thorough discussion of the planar freezing offinlW 
domain aqueous solutions in which these assumptions are 
relaxed is presently being prepared 

transfer limitations that at any temperature above the 
eutectic temperature a multicomponent solution can- 
not completely solidify but must remain partially 

liquid with a uniform equilibrium composition cor- 
responding to that temperature. 

The purpose of this study is to present a yenrrui:;e~i 
analytical solution to the problem of the unidirectional 

freezing at a constant temperature of a ‘supercooled’ 
aqueous solution of finite extent which is valid at both 
short and long times. We will therefore consider a 
simple one-dimensional system of initially uniform 
composition which is rapidly cooled to a temperature 

below its initial equilibrium freezing temperature. At1 

analysis is presented to predict the solute conccn- 
tration profile and the motion of the solid liquid 
interface in this system as a function of time under 
three simplifying assumption.* First, that the sensible 

and latent heats are capable of being torully removed 

from the system by the environment so that the 
temperature of system does not ‘rebound’ back t:)- 
wards its initial equilibrium freezing temperature but 
remains constant. Secondly, :hat the solid liquid 
interface remains planar 111 spite of the fact that the 

solution in front of the advancing ice front is ‘<on- 
stitutionally supercooled’ [12]. Finally, that the mass 
diffuslvity is considered to he independent A 
concentration. 

Let us consider the situation where an aqueous 
solution having an initial volume I/; and an initial 

uniform composition csir corresponding to an equilib- 

rium freezing temperature r,,. is uniformly ‘super- 

cooled’ to a temperature rl such that 7,i > 7; 3, r,,, 
where r,,, is the eutectic temperature, before it is 
allowed to come into chemical and thermodynamic 
equilibrium with its surroundings by being permitted 
to freeze uniformly inward from its outer surfaces. 
Now for the case of a binary solution consisting of a 
single solvent. kc, and a single solute, s, which changes 
in volume when viewed from the laboratory frame of 
reference due to the addition or removal of solvent but 
which remains fixed with respect to the initial volume 
of solute. Levin et u/. [ 131 <howed that the con- 
ventional diffusion equation is not valid. However. an 
equation of that form can be arranged by an approp- 

riate coordinate transformation 
Let us define a modified scale of length. y,. such that 

equal increments ofy, contain equal increments ofunit 
basic volume of solute per unit area: 

lip,, = 4,d\, (1 i 

where @,( y, t) is the volume fraction of solute in the 
laboratory-fixed reference frame. In the solute-fixed 
reference frame, the water and solute concentrations 

must be expressed, respectively, as the amount ofwand 
.) per untt basic volume of solute: 
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where c”, and c: are, respectively, the solvent and solute 
concentrations in the solute-fixed frame of reference, 
c, and c, are, respectively, the solvent and solute 
concentrations in the laboratory-fixed frame of re- 
ference, and I?,,, and 0, are, respectively, the apparent 
molar volumes of the solvent and the solute (assumed 
constant). Since by definition 

4, = u,c,, 4, = v,c, (3) 

where 4, is the water volume fraction in the laboratory 
frame and 

4, + 4, = 1 

it can be shown that 

(4) 

and 

v,dc, + o,dc, = 0, 

&u = 119, - 1 

dc; = -$dc,. 
s 

(5) 

(6) 

(7) 

As we have already mentioned, for aqueous so- 
lutions the ratio of the thermal diffusivity of pure ice 
(1.26 x lOA2 cm2 s-l) to the thermal diffusivity of the 
remaining liquid (1.33 x 10e3cm2 s-l) is appro- 
ximately 10 [ 141. Furthermore, the ratio of the thermal 
diffusivity to the mass diffusivity (1.18 x lo-’ cm2 s- ’ 
at O’C) in the liquid is approximately 100. Con- 
sequently, if we limit ourselves to systems which are 
sufficiently small so that the sensible and latent heats 
are capable of being totally dissipated by the environ- 
ment then we may assume that the temperature of our 
system will remain essentially uniform and constant, 

T= T, (8) 

The continuity equations in the solute-fixed frame 
for the liquid region of the system therefore take the 
form [13] 

s_ 
at - 

0, 

and 

ac; 
,t+v,,q=o Pb) 

where J”, is the molar flux of solvent in the solute-fixed 
frame. Now Crank [8] has shown that 

JG =$J, (10) 
S 

where J, is the flux of solvent in the laboratory 
(volume)-fixed frame 

J, = -&$ (11) 

and Dy(cS, T) is the effective diffusivity in the labo- 
ratory (volume)-fixed frame. Consequently on the 
basis of the above relationships [equations (I), (7), (10) 

and (ll)], the continuity equation for the solvent 
[equation (9b)] can be re-written as 

$2+&(-$$)=o (12) 

or, employing equations (3)-(5), as 

s_ a __ De5 +“dc, 
at ay ( > cy y ay (13) 

where 

Dv ac, 
uY= --- c, aY y 

(14) 

is the effective convective velocity in the laboratory 
frame. 

The initial, boundary and final equilibrium con- 
ditions corresponding to this situation are 

1. t = 0 c, = CSi for all ( y / < Ii. (15) 

2. t>o 

(4 
ac, 
ay = 0 at y = 0, (16a) 

(b) c, = c Sx, = c,(Tf) at y = + I(t). (16b) 

3. t + m c, + c,, for all 1 y( I I,, (17) 

where Ii is the initial ‘half-thickness’ of the system, I, is 
the final equilibrium half thickness of the system which 
because of the constancy of the amount of solute 
within the liquid region is given by 

and l(t) is the size of the system at any time t 

s 

f 
l(t) = Ii + v,dt (19) 

0 

such that uL is the effective convective velocity at the 
liquid-solid interface, y = l(t) [see equation (14)], or 
more appropriately, the thermodynamically-induced 
solvent-volume flux out of the liquid region and into 
the solid region. The equilibrium liquidus 
concentrationPtemperature relationship for an ideal, 
dilute aqueous solution can be approximated by the 
following expression [ 151 : 

(20) 

where v is the number of species per dissociated solute 
molecule, L, is the molar latent heat of fusion of pure 
water and T,, is the equilibrium freezing temperature 
of pure water at 1 atm. Using typical values of L, 
N 6OOOJmol-‘, Tf, = 273.15K, V, = 18cm3mol-‘, 
and R = 8.314 J mol-’ K [14], this expression can be 
rewritten as 

CATI) = 
- (T/ - T,,) mall-’ 

1.86v -. K (21) 



Although the mass-transfer equation together with 
the initial and boundary conditions given above 
[equations (13) (16). (19) and (2l)J form a complete 

set of mathematical expressions. solution of thus pro- 
blem is facilitated by transforming these expressions 
from the laboratory-fixed frame of reference, where a 
boundary condition at a moving interface muq;t be 

specified [equation (16b)], back to the solute-fixed 

frame of reference where the position of the 

liquid solid interface remains stationary [ 13). I!sing 
equations (3} (7), it can bc shown that the analogous 
mass-transfer equation in the solute-fixed frame of 
reference takes the form 

(22) 

where 

0 < I’, i. i, = 4’,,,ii = cp, , I, = constant (‘3, 

and D” is the effective diffusivity in the solute-fixed 

frame of reference 

I>” = fj$ I>’ (24) 

The initial, boundary and final equilibrium ~onditiolls 
in the solute-fixed frame of reference are: 

I. f = 0 c;. = (‘I,, for all j y, 1 i i,. (25) 

2. I > 0 
;C: 

i\,, 
= 0 at ,Y, = 0, (26a) 

Since at temperatures ahobe the cutectic, the amount 

of solute within the liquid region remains constant, the 

volume of the liquid region at any time !. b’,t,t). and 

hence, of the solid region. V$t), can easily be obtained 

from the above expression for c:, by first noting that at 
I = 0. b,,,V, = t; where C; is the initial volume of the 

system. and as I -+ 1 . 9, j 1;. , -f 1; where J,;. ( 1% the 
final equilibrium volume of the llquld region. and 
secondly, that 

\\here (i;, is the spatially averaged solute volume 
fraction at any time t and 4 is the area of the system 

normal to the direction of ice propagation. P~rfor~ling 
the above itltegration we obtain 

c;, = c:, ( at j’, = I,,. (26b) 
and 

3. I* / 1,1, --t CL, , for all / y5 j 5 I,. (‘71 

Although transformation of the governing mass trans- 
b;(f) = L) - I,(ri. 

port equation from the laboratory [equation (13)] to Finally, by di~erentiating with respect 

(Ma) 

to time the 

the solute-fixed [equation (22)J frame of reference above expression for the time variation of the liquid 

transforms the non-linearity associated with defining a region volume [equation (Na)J, we can obtain the 

boundary condition at the moving interface y = i(r) to following expression for the velocity ofthe liquid--solid 

a non-linearity in the governing equation, the solute- interface at any time t: 

fixed expression is inherently easier to solve than the 

laboratory-fixed expression. [‘, II -- 2( t; -- I; , > /ii 

4 !’ 

If we neglect the probable concentration depen- 
dence of the diffusion coefficient D‘ in the solute-fixed 
frame of reference.* then the solute-fixed mass-transfer 

reIationships can be solved analytically (61, yielding 
the following expression for the time and spatial 
variation of the water coll~entration CL. in the solute- 
fixed frame and the solute concentration C, in the 
laboratory-fixed frame : 

The concentration profile wtthin the liquid region. 

the overall liquid and solid region volumes, and the 
velocity of the liquid- solid interface at any time are 
presented graphically in Figs. l- 3, respectively. 
Specifically, in Fig. l(a) the dimensionless water 
concentration ratio CC:, - c’, , $‘[c:.~ - cz , ] is plotted 
as a function of the dimensionless time modulus ; 
= D’r/l\L with the non-dimensional position $,, = y,/‘l,, 

*It should be noted that inclwion in the analysis of the as a parameter; while in Fig. l(b), the dimensionless 

non-linearity associated with the 4,: concentration depen- water concentration in the solute fixed frame is plotted 
dence of the diffusion coefficient D‘ [equation (24)] precludes in three dimensional form as a function of both rand f,, 
an analytical solution. The effect of this non-linearity on the 
results is currently being investigated by numerical methods 

In Fig. 2, the dimensionless overall liquid [C;, -- V,, , J 

fur the mOre general freezing problem of the uniform cooling [V, - V,, , ] and solid region r/,,‘[f/; - C’,, , -1 

at finite rates of aqueous solutions and will he reported volumes are shown as a function of the dimensionless 

shortly [ 161 time modulus t^; and in Fig. 3, the negative 
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0.8 

0.6 

IO-* 10-l I IO 

TIME,? 

FIG. l(a). The time variation (i= WC//~) of the solute-fixed water concentration [(CL - c;,)/(& - cLm)] or 
solute concentration [(l/c,) - I/c,,)/(~/c,~ - l/c,,)] at various positions (9, = yJ,) within an infinite 
aqueous solution layer of thickness 21, at an initial concentration csi which is freezing at a uniform constant 

temperature corresponding to an equilibrium concentration c,,.. 

of the dimensionless interface velocity (qA/ 
[ T$ - v,,,])(~:/D~) is shown as a function of the dimen- 

sionless time modulus c 
From these figures, it is obvious that non-uniform 

concentration profiles exist within the liquid region of 
the system as freezing progresses and that the volumes 
of the liquid and solid regions together with the 
velocity of the liquid-solid interface vary non-linearly 

with time. As expected, due to the removal of water 
from the liquid region by the advancing ice front and 
the relative inability of the ‘filtered’ solute to diffuse 

away from the advancing interface, the water (solute) 

concentration is lowest (highest) at the liquid-solid 

interface and increases (decreases) towards the center 
of the system. This so-called concentration polari- 
zation effect is most pronounced at short times (t^ 5 2). 
For example, by t^- 0.1, the dimensionless water- 
concentration ratio at the interface has decreased to 

- 35 % of its initial value while the dimensionless 
water-concentration ratio at the center has decreased 
to only -95% of its initial value even though the 

dimensionless volume of the liquid (solid) region has 

FIG. l(b). Three dimensional representation of the spatial (9, = yJ[,) and time (t^= D”t/O) variation in the 
solute-fixed water concentration [?+ = (c”, - c&,)/(& - C” ,,)I of a supercooled aqueous solution during 

freezing. 



OZ- 

10-a io-* L1 

T!ME, : 

FIG. 2. The time variation (i = D‘t/g) of the liquid 
[(V, - V,,)/(I: - q.x)] and solid [V&v - V,,,)] region 
volumes of a supercooled aqueous solution during freezing. 

decreased (increased) by - 35 “/,. However, by i - 1, 
the difference between the dimensionless water con- 

centration ratio at the interface (- 3 “i, of initial value) 

and at the center ( - 12 % of initial value) has narrowed 
while the dimensionless volume of the liquid (solid) 

region has decreased (increased) by - 93 y0 from its 

initial value. Finally, during the time course of the 

freezing process, the velocity of the liquid-solid in- 

terface has also varied in the expected 
manner-decreasing monotonically from an initial 

negatively infinite value,* which is due to the step 
change in the interface solute concentration, and 

hence, infinite interface solute concentration gradient 

*For more general freezing problems, the initial Ice front 
propagation velocity will be finite [16]. 

at zero time, to a final equilibrium value ofzero as time 
approaches infinity. 

Lastly. this type of behavior has been noted by 
several experimental investigators (Terwilliger and 
Dizio [t7]. Grange et al. [lo]. Kiirber and Schiewe 

[ 1 X]) in their studies of the freezing characteristics of 
salt-water solutions. Unfortunatelq. in the analysis of 

their data they have for the most part followed the lead 
of the majority of theoretical investigators who have 

modeled finite systems as being semi-finite and have 

either assumed that the position of the interface varies 
linearly with time [19, 201 or varies with the square 

root of time (see Neumann’s similarity development in 
Carslaw and Jaeger [6], Tiller [Zl], Terwilliger and 

Dizio [17]). On the basis of the present thermody- 

namic treatment of the freezing of aqueous solutions in 
finite domains, the assumption of a constant interface 
velocity is obviously a grossly incorrect mathematical 
approximation. However, comparison of our finite-. 

domain theoretical results with the semi-infinite do- 
main theoretical results of Terwilliger and Dizio 1171 

lends some credence to the use of the semi-infinite 

domain similarity treatment for the reduction of 
experimental data. In Figs. 4 and 5, the logarithm of 

the non-dimensional interface position measured with 

respect to the initial freezing point .E(t) = 1 - I(t)/li and 
the negative of the non-dimensional interface velocity 
c* LSI3 respectively, are plotted versus the logarithm of 
the non-dimensional time p. A casual inspection of 

these curves would lead one to believe that at short 
times (I- < 0.5), when less than -_ 75 “() of the original 

solution has solidified, the interFace position is pro- 

portional to t’ ’ as the classical semi-infinite domain 
similarity solutions would predict. Closer inspection of 

these curves, however, would show that while this 
;lpproximation would probably be valid within the 
usual limits of experimental error. the supposedly 

10-5 IO-5 IO-’ IO' 

TIME, ! 

FIG. 3. The time variation (i = D”t/lf) of the liquid-solid interface velocity uLsl = d[ V, - V,,, J/(F - V(_,)]/dt^ 
for a supercooled aqueous solution during freezing. 
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PIG. 4. The time variation (? = D’Q’!,“) of the liquid-solid interface position (s* = I -fir,) for a supercooled 
aqueous solution during freezing. 

TIME, i 

FIG. 5. The time variation (i = D4/If) oftheliquid-solid interface velocity (d,,, = - d[Ps/( q - PL,)]difor a 
supercooled aqueous solution. 

constant similarity parameter actually varies by over 
100% within the time interval 1O-4 < t^< lo-‘. Con- 

sequently, experimentalists should be cautious in their 
use of the semi-infinite domain similarity approxi- 
mation in the reduction of their experimental data. 
This is especially true at long times $2 0.5) when 
thermodynamics dictates that for systems of finite 
extent the velocity of the moving interface, and hence, 
the rate of loss of liquid and growth of solid must 
approach zero not necessarily because of heat and 
mass transfer considerations but because of equilib- 
rium chemical therm~yn~ic considerations, 
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SOLUTION ANALYTIQUE GENERALISEE POUR LE GEL D’UNE SOLU FION 
AQUEUSE DANS UN DOMAINE FIN1 

R&sum&On prCsente une solution g&&ale analytique du problt?me du gel unidirectionnel j temperature 
constante d’une solution aqueuse. Cette solution est valable pour des solutions dilules ou non et aussi pour 
des temps tours ou longs. Des approximations mathimatiques sont faites uniquement dans I’idCe que ta 
diffusivitt massique est indipendente de la concentration. Les rtsultats theoriques se cornparent favorable- 
ment aux r&ultats expkrimentaux d’autres auteurs et ils montrent que les profils de concentration peuvent 
exister dans le liquide quand le gel progresse et que les volumes des rigions liquide et solide peuvent varier 
non lineairement en fonction du temps. Le degrt de polarisation de concentration et la vitesse de propagation 
de l’interface liquide-solide sont des fonctions du sous-refroidissement initial, de la diffusivitt massique et de 
la taille initiale du systime. On compare les rCsuItats du gel dans des domaines finis aux r&ultats classiques 

dans des domaines semi-infinis. 

ALGEMEINE ANALYTISCHE LOSUNG BEIM GEFRIERVORGANG EINER 
UNTERKOHLTEN WASSRIGEN LijSUNG FiiR EIN ENDLICHES GEBIET 

Zusammenfassung-Eine allgemeine analytische Liisung des Problems des emdimensionalen ebenen 
Gefriervorgangs einer unterkiihlten w%rigen LGsung bei konstanter Temperatur mit endlicher Ausdehnung 
wird angegeben. Diese Lb;sung ist giiltig sowohl fiir verdiinnte als such fiir unverdiinnte Liisungen fiir kurze 
und lange Zeiten. Mathematische Ngherungen wurden unter der Annahme gemacht, da8 das Diffusionsver- 
mb;gen von der Konzentration unabhsngig ist. Unsere theoretischen Ergebnisse stimmen sehr gut mlt den 
experimentellen Resultaten anderer Forscher iiberein und zeigen, dalj instationare unpleichfiirmige 

Konzentrationsverl%ufe innerhalb des Fliissigkeitsgebiets wHhrend des Gefrierens existieren konnen und da13 
die Volumina der Fliissigkeits- und Feststoffgebiete zeitlich nichtlinear variieren konnen. Der Grad der 
Konzentrationspolarisation und die Fortpflanzungsgeschwindigkeit der PhasengrenzflLche ergeben sich als 
Funktionen des anfgnglichen Unterkiihlungsgrades, des Diffusionskoeffizienten und der AnfangsgrsBe des 
Systems. Ein Vergleich zwischen unseren Ergebnissen fiir das Gefrieren in begrenzten Gebieten und der 
klassischen Ahnlichkeitsltisungen fiir den Gefriervorgang in halbunendlichen Gebieten wurde ebenfalls 

angestellt. 
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OEOBUEHHOE AHAJIBTWIECKOE PEUlEHIlE 3AAAW-l 3AMEP3AHIIII 
I-IEPEOXJIAIKKAEHHOI-0 BOAHOI-0 PACTBOPA B KOHEqHOfi OEJIACTI? 

AHHOTBIIWR- npenc-raeneso o6o6ueHHoe aHannTwecKoe peruewe sanaw HanpaBneHHoro nnoCKoro 

3aMep3aHHR IlpH IIOCTOSlHHOii TeMIIepaType IIC~OXJlZK~CHHOrO BOllHOt’ paCTB0~ B KOHViHOfi o6nacru. 
Peruewe mnaexa cnpasennemm KaK iIn~ pa36aBneHHOrO. TaK n m151 HepasBasneHHoro pacrsopoe, 

a TaKme NIR Ma."blx n 6OnbmHX BHTepBanOB BpeMeHn. MaTeMaTWIeCKne nOnyIUeHH5I 3aK,IIO'la,OTCR 

B TOM,'ITO KO3+$nUWeHTAU~~y3Un paCCMaTpHBaeTCS4 He 3aBnCffUAM OT KOHUeHTpaWH. Pe3ynbTaTbI 

TeOpeTWeCKHX paC'ieTOB XOpOUIO COrJIaCylOTC5l C 3KCnCpnMeHTaJIbHbIMn LlaHHbIMn JlpyNX pa6oT A 

CBWeTenbCTByfOT 0 TOM, 'IT-0 B EnflKOii +a3C B IIpOWCCe 3aMep3aHHR MOryT AMCTb MeCTO He- 

CTaUnOHapHbIe HeOnHOpOL,HbIe IIpO@iJIn KOHlleHTpaLInH H 'IT0 06seMbI XGiAKOi? n TBepLiOfi +a3 

bioryr HennHeBHo n3MemITbcs co BpeMeHeM. HaiheHo, wo nepenan KoHueHTpaunn H cKopocTb 

pacnpocTpaIieHnrr rpaHnubI pasnena +a3 3aBncsT 0~ HaranbHol cTeneHn nepeoxnaEaeHmi pac-raopa. 

K03+&iuneHTa nnc)+y3nw n HaqanbHbIx pashlepoe cHcTeMbI. npoBeneH0 TaKle cpaBHeHne nony- 
SeHHbIX B pa6oTe pe3yJIbTaTOB nJIll o6beMa KOHe',HbIX pa3MepOB C KJIaCCn'IeCKUMn aBTOMOfieJ,bHbIMn 

peuIeHnRMn anll nOJIy6eCKOHeqHbIX o6nacTefi. 


