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Abstract—A generalized analytical solution to the problem of the unidirectional planar freezing at a
constant temperature of a supercooled aqueous solution of finite extent is presented. This solution is valid for
both dilute and non-dilute soiutions and also at both short and long times. Mathematical approximations
are made only to the extent that the mass diffusivity is considered to be independent of concentration. Our
theoretical results compare favorably with the experimental results of other investigators and demonstrate

that transient non-uniform concentration profiles can exist within the liquid region of systems as freezing

progresses and that the volumes of the liquid and solid regions can vary non-linearly with time. The extent of
concentration polarization and the velocity of propagation of the liquid-solid interface are found to be
functions of the initial degree of supercooling, the mass diffusivity, and the initial size of the system. A
comparison is also made between our results for freezing in finite domains and the classical similarity results
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for freezing in semi-infinite domains.

NOMENCLATURE simultaneous solution of heat- and mass-transfer
A, area; equations subject to boundaries whose positions vary
c, molar concentration; with time. Examples of such phenomena are the
D, diffusion coefficient; melting or solidification of common substances such as
L, latent heat of fusion; ice and water, the production of frozen foods, the
A length; casting and welding of metals during fabrication,
n, index; ablation during spacecraft re-entry, the penetration of
T, temperature ; frost into the earth and the melting of coolant-deficient
t, time; nuclear-reactor fuel elements. Accordingly, many re-
f non-dimensional time (Fourier modulus); ferences to moving boundary multi-phase problems
V, volume; exist and can be found in the literature surveys of
v, velocity; Bankoff [ 1], Muehlbauer and Sunderland [2], Rubin-
o, apparent molar volume; stein [3], Fox [4] and Boley [5].
s, length; The essential and common features of these systems
Vs position ; is that an interface exists which separates two regions
P, non-dimensional position ; possessing greatly different thermodynamic, chemical,
v, number of species per molecule. and physical properties and that the position of this
Superscripts interface is neither fixed in space nor is its motion
s, solute-fixed frame of reference : known a priori. For example, let us consider the
v, volume-fixed frame of reference. solidification of a finite volume of an aqueous solution
. which upon freezing forms a pure-ice solid from which
Subscripts . . . .
7 freczing Fhfe §olute is completely r.ejlected. If this §olut10n l?as an
; initial ml?lal uniform composition €y aqd.l‘s at ax‘m.lnmal
I: liquid: uqurm temperature T; above its initial equlhbrlum
S’ solid - freezxpg ter.nperat.urel Tﬁ(cs.,-), then the systems will
’ i ) remain entirely liquid until the temperature T,; is
s, solute or solute-fixed frame of reference; . . i
W, water reached. If we then assume that at this point or at any
y position; temperature between T, and T, (i.€. supercool-
x, final. ’ ing), that ice nucleates at the outer surfaces of our

INTRODUCTION

IN MANY common engineering situations, heat transfer
is accompanied by phase changes and/or compo-
sitional changes in the conducting medium because of
chemical reactions occurring within the medium or the
segregation of material due to changes in phase.
Analyses of these phenomena usually involve the

system, the freezing process will begin and solute will
be rejected by the advancing ice front. Under the
conditions of local thermodynamic equilibrium, how-
ever, the temperature at the liquid-solid interface
will be uniquely related to the composition of the
liquid at the interface through the liquidus line of the
solution’s phase diagram. Continued growth of the
solid phase will therefore depend not only upon the
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ability to remove the latent heat of fusion and the
sensible heats of the liquid and solid regions, as is the
case for pure water when no solutes are present, but
also upon the ability of the solutes in the liquid phase
to diffuse away from the interface, thereby permitting
water to gain access to the pure-ice solid phase. This is
especially true for aqueous solutions where the ratio of
the thermal diffusivity of ice to the thermal diffusivity
of the remaining liquid is approximately 10 and the
ratio of the thermal diffusivity to the mass diffusivity in
the liquid is approximately 100. Hence, under certain
circumstances, the solidification process for inulticom-
ponent solutions may be rate-limited by mass-transfer
considerations, that is, by the ability of the solutes to
diffuse away from the interface and for the solvent to
diffuse towards the interface, rather than solely by the
heat-transfer considerations of whether or not the
latent and sensible heats can be removed.

Because of this coupling of heat- and mass-transfer
considerations, it is necessary in solving such problems
to determine the spatial and time dependence of the
temperature and concentration fields and the manner
and rate at which the interface will move. It is therefore
not surprising to find that only a few exact analytical
solutions exist, with the most notable being those of
Neumann (see [6]) and Stefan (see [7]) who con-
sidered the freezing and melting pure substances
initially at the fusion temperature. These exact so-
lutions, however, are characterized by the fact that
they deal with semi-infinite domain situations having
similarity solutions. For other problems, however,
especially those dealing with moving boundaries in
finite domains, the velocity of the interface is not
related to time through a similarity variable and either
numerical (for review, see [8]), or approximate analyti-
cal (for review, see [9]) methods have had to be
employed. Unfortunately, only Weinbaum and Jiji [9]
who analyzed the freezing of pure water in a finite
domain have obtained a solution which is valid over
the entire domain of time. Most other investigators
studying the freezing of substances of finite extent have
limited themselves to a discussion of the transients
occurring at relatively ‘short’ times (e.g. [ 10, 11]) where
the long time effects of the finiteness of their systems
could be neglected. The factors affecting the long ime
behavior of finite domain problems, however, are
vastly different from the factors affecting the long time
behavior of semi-infinite domain problems. Whereas
the velocity of the solid- liquid interface will approach
zero as time approaches infinity for a semi-infinite
domain situation due to the heat-transfer limitation of
not being able to remove the sensible and latent heats
through a solid phase whose thickness approaches
infinity at long times; the interface velocity for a finite
domain situation will approach zero as time ap-
proaches infinity due to the thermodynamic and mass-

*A more thorough discussion of the planar freezing of finite
domain agueous solutions in which these assumptions are
relaxed is presently being prepared.
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transfer limitations that at any temperature above the
eutectic temperature a multicomponent solution can-
not completely solidify but must remain partially
liquid with a uniform equilibrium composition cor-
responding to that temperature.

The purpose of this study is to present a generalized
analytical solution to the problem of the unidirectional
freezing at a constant temperature of a ‘supercooled’
aqueous solution of finite extent which is valid at both
short and long times. We will therefore consider a
simple one-dimensional system of initially uniform
composition which is rapidly cooled to a temperature
below its initial equilibrium freezing temperature. An
analysis is presented to predict the solute concen-
tration profile and the motion of the solid-liquid
interface in this system as a function of time under
three simplifying assumption.* First, that the sensible
and latent heats are capable of being totally removed
from the system by the environment so that the
temperature of system does not ‘rebound’ back to-
wards its initial equilibrium freezing temperature but
remains constant. Secondly, that the solid--liquid
interface remains planar in spite of the fact that the
solution in front of the advancing ice front is “con-
stitutionally supercooled’ [ 12]. Finally, that the mass
diffusivity is considered to be independent of
concentration.

FORMULATION

Let us consider the situation where an aqueous
solution having an initial volume V; and an initial
uniform composition ¢y, corresponding to an equilib-
rium freezing temperature T, is uniformly ‘super-
cooled’ to a temperature T, such that Ty; > T, > T,
where T, is the eutectic temperature, before it is
allowed to come into chemical and thermodynamic
equilibrium with its surroundings by being permitted
to freeze uniformly inward from its outer surfaces.
Now for the case of a binary solution consisting of a
single solvent, w, and a single solute, s, which changes
in volume when viewed from the laboratory frame of
reference due to the addition or removal of solvent but
which remains fixed with respect to the initial volume
of solute. Levin et al. [13] showed that the con-
ventional diffusion equation is not valid. However. an
equation of that form can be arranged by an approp-
riate coordinate transformation.

Let us define a modified scale of length, y, such that
equal increments of y, contain equal increments of unit
basic volume of solute per unit area:

dy, = ¢.dy (1}

where ¢(y,1) is the volume fraction of solute in the
laboratory-fixed reference frame. In the solute-fixed
reference frame, the water and solute concentrations
must be expressed, respectively, as the amount of w and
s per unit basic volume of solute:

1
- = constant {2)
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where ¢}, and c{ are, respectively, the solvent and solute
concentrations in the solute-fixed frame of reference,
¢, and ¢, are, respectively, the solvent and solute
concentrations in the laboratory-fixed frame of re-
ference, and 7,, and o are, respectively, the apparent
molar volumes of the solvent and the solute (assumed
constant). Since by definition

b5 = UiC; G)

where ¢, is the water volume fraction in the laboratory
frame and

¢W = ﬁwcw5

¢+ d,=1 )
it can be shown that
v,dc,, + vdeg =0, 5)
¢ =1/, — 1 (6)
and
dc;, = qudew' (7

As we have already mentioned, for aqueous so-
lutions the ratio of the thermal diffusivity of pure ice
(1.26 x 10" 2cm?s™ 1) to the thermal diffusivity of the
remaining liquid (1.33x1073cm?s™!) is appro-
ximately 10 [14]. Furthermore, the ratio of the thermal
diffusivity to the mass diffusivity (1.18 x 107 ® cm?*s~*
at 0°C) in the liquid is approximately 100. Con-
sequently, if we limit ourselves to systems which are
sufficiently small so that the sensible and latent heats
are capable of being totally dissipated by the environ-
ment then we may assume that the temperature of our
system will remain essentially uniform and constant,

T="T, @8)

The continuity equations in the solute-fixed frame
for the liquid region of the system therefore take the
form [13]

s 9
el (%a)
and
ac, .
o + Vs di, =0 (9b)

where J;, is the molar flux of solvent in the solute-fixed

frame. Now Crank [8] has shown that

J,=—1J, (10)

where J,, is the flux of solvent in the laboratory
(volume)-fixed frame

dc

J,=-D"—

w ay

and D¥(c,, T) is the effective diffusivity in the labo-

ratory (volume)-fixed frame. Consequently on the
basis of the above relationships [equations (1), (7), (10)

(1)
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and (11)], the continuity equation for the solvent
[equation (9b)] can be re-written as

1o d DV a
= % _Z %y (12)
¢; ot POy\ ¢ Oy
or, employing equations (3)—(5), as
dc 5 dc de
S (pr= = 13
ot 5y< 6y> " ay (1)
where
DY éc
= 14
vy o v, (14)

is the effective convective velocity in the laboratory
frame.

The initial, boundary and final equilibrium con-
ditions corresponding to this situation are

L t=0 ¢ =¢ forall [ y|<l.  (15)
2. t>0

(a) Z—;’ =0 aty =0, (16a)
(b) € =Co = ¢(Ty) aty = L) (16b)
3. tow0e, -y forall|y|<l,, (17)

where ; is the initial ‘half-thickness’ of the system, [, is
the final equilibrium half thickness of the system which
because of the constancy of the amount of solute
within the liquid region is given by

L=l (18)
cS(t
and I(t) is the size of the system at any time ¢
t
l([) = li + J‘ Uldt (19)
o

such that v, is the effective convective velocity at the
liquid—solid interface, y = i(t) [see equation (14)], or
more appropriately, the thermodynamically-induced
solvent-volume flux out of the liquid region and into
the solid region. The equilibrium liquidus
concentration—temperature relationship for an ideal,
dilute aqueous solution can be approximated by the
following expression [15]:

Lw(wa - Tf)

vel(Ty) ~ RTZ
w Iw

20

where v is the number of species per dissociated solute
molecule, L, is the molar latent heat of fusion of pure
water and Ty, is the equilibrium freezing temperature
of pure water at 1atm. Using typical values of L,
~6000Jmol™t, T,, = 273.15K, 0, = 18cm®mol !,
and R = 8.314Jmol ! K [14], this expression can be
rewritten as

— (T, — T;,) mol1™?
1.86v K

e(Ty) = (21)
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Although the mass-transfer equation together with
the initial and boundary conditions given above
[equations (13)-{16), (19) and (21}] form a complete
set of mathematical expressions. solution of this pro-
blem is facilitated by transforming these expressions
from the laboratory-fixed frame of reference, where a
boundary condition at a moving interface must be
specified [equation (16b)], back to the solute-fixed
frame of reference where the position of the
liquid- solid interface remains stationary [ 13]. Using
equations {3}-(7). it can be shown that the analogous

mass-transfer equation in the solute-fixed frame of

reference takes the form
(22)

where
O<yy<l=¢ = ¢, 1, =constant (23
and D 1s the effective diffusivity in the solute-fixed
frame of reference
D= $1D". (24)

The initial, boundary and final equilibrium conditions
in the solute-fixed frame of reference are:

1. t=0 . =¢, foralljy]=<lL. {25)

2 r>0 Cvo 0 at v, =0, (264)
v,

o=, aty, =l (26b)

3. ro v o, forall |y < (27}

Although transformation of the governing mass trans-
port equation from the laboratory [equation (13)] to
the solute-fixed [equation (22)] frame of reference
transforms the non-linearity associated with defining a
boundary condition at the moving interface vy = l{1) to
a non-linearity in the governing equation, the solute-
fixed expression is inherently easier to solve than the
laboratory-fixed expression.

RESULTS AND DISCUSSION

If we neglect the probable concentration depen-
dence of the diffusion coefficient D* in the solute-fixed
frame of reference.* then the solute-fixed mass-transfer
relationships can be solved analytically [6], yielding
the following expression for the time and spatial
variation of the water concentration ¢, in the solute-
fixed frame and the solute concentration ¢, in the

laboratory-fixed frame:

*It should be noted that inclusion in the analysis of the
non-linearity associated with the ¢? concentration depen-
dence of the diffusion coefficient 1 [equation (24)] precludes
an analytical solution. The effect of this non-linearity on the
results is currently being investigated by numerical methods
for the more general freezing problem of the uniform cooling
at finite rates of aqueous solutions and will be reported
shortly [16].
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o=y l/cs -1 iy
Coi — c"f,,, e, — 1 ‘e
5 o nel ; R i
L7 J‘"” ccos| [V
= 2:1 V- 1) cos ( H o 5 )n_ry\, 3 g

-‘(n~i)7’Dt ]} (28)
Since at temperatures above the eutectic, the amount
of solute within the liquid region remains constant, the
volume of the hquid region at any time 1. Vi {1}, and
hence, of the solid region. V{1), can casily be obtained
from the above expression for ¢, by first noting that at
i =0, ¢,V =¥ where V] is the initial volume of the
system, and as t ~ v, ¢, ¥, — ¥, where ¥}, 1« the
final equilibrium volume of the liquid region, and
secondly, that

exp

Vo= o Vo= | 50+ Diddy,, 129)
;"\

N
where ¢, is the spatially averaged solute volume
fraction at any time t and A is the area of the system
normal to the direction of ice propagation. Performing
the above integration we obtain

exp

Wl =V, 2

(30a)
and

Vity = ¥, — Vi) {30b)

Finally, by differentiating with respect to time the
above expression for the time variation of the liguid
region volume [equation (30a)]. we can obtain the
following expression for the velocity of the liquid-solid
interface at any time ¢:

=2V VL
ll e 4 ’;

- (n - i‘):n"‘l)"l/’lf ’ {30

X Yy exp
n i
The concentration profile within the liguid region,

the overall liquid and solid region volumes, and the

velocity of the liquid-solid interface at any time are
presented graphically in Figs. 1-3, respectively.

Specifically, in Fig. I{a) the dimensionless water

concentration ratio [¢, — ¢, /S — ¢, 11s plotted

as a function of the dimensionless time modulus ¢

= D*/I? with the non-dimensional position 3, = y /I,

as a parameter; while in Fig. 1(b), the dimensionless

water concentration in the solute fixed frame is plotted

in three dimensional form as a function of both f and .

In Fig. 2, the dimensionless overall liquid [V, —~ V|

[Vi-V..] and solid region V/{Vi—V,., ]

volumes are shown as a function of the dimensioniess

time modulus f; and in Fig. 3, the negative
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FIG. 1(a). The time variation (f = D%/i?) of the solute-fixed water concentration [(c}, — ¢5,.)/(c5; — )] of

solute concentration [(1/c,) — 1/¢,,,)/(1/c; — 1/c,)] at various positions (¥, = y//) within an infinite

aqueous solution layer of thickness 2/, at an initial concentration c; which is freezing at a uniform constant
temperature corresponding to an equilibrium concentration ¢,

of the dimensionless interface velocity (v,4/
[Vi= Vo )(2/D¥) is shown as a function of the dimen-
sionless time modulus ¢.

From these figures, it is obvious that non-uniform
concentration profiles exist within the liquid region of
the system as freezing progresses and that the volumes
of the liquid and solid regions together with the
velocity of the liquid-solid interface vary non-iinearly
with time. As expected, due to the removal of water
from the liquid region by the advancing ice front and
the relative inability of the ‘filtered’ solute to diffuse

away from the advancing interface, the water (solute)
concentration is lowest (highest) at the liquid—solid
interface and increases (decreases) towards the center
of the system. This so-called concentration polari-
zation effect is most pronounced at short times (f < 2).
For example, by ¢ ~ 0.1, the dimensionless water-
concentration ratio at the interface has decreased to
~35% of its initial value while the dimensionless
water-concentration ratio at the center has decreased
to only ~95% of its initial value even though the
dimensionless volume of the liquid (solid) region has

F1G. 1(b). Three dimensional representation of the spatial (§; = y,/I,) and time (f = D*/I?} variation in the

solute-fixed water concentration [&, = (c§, — ¢3,,,)/(c5,; — c5.,,)] of a supercooled aqueous solution during
freezing.
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FiG. 2. The time variation (f= D't/l2) of the liquid
[V — Vi )/(Vi = Vi.,)] and solid [Ve/(V; ~ V},,)] region
volumes of a supercooled aqueous solution during freezing.

decreased (increased) by ~35%,. However, by  ~ 1,
the difference between the dimensionless water con-
centration ratio at the interface (~ 3 % of initial value)
and at the center ( ~ 129 of initial value) has narrowed
while the dimensionless volume of the liquid (solid)
region has decreased (increased) by ~93% from its
initial value. Finally, during the time course of the
freezing process, the velocity of the liquid-solid in-
terface has also varied in the expected
manner—decreasing monotonically from an initial
negatively infinite value,* which is due to the step
change in the interface solute concentration, and
hence, infinite interface solute concentration gradient

*For more general freezing problems, the initial ice front
propagation velocity will be finite [16].

at zero time, to a final equilibrium value of zero as time
approaches infinity.

Lastly. this type of behavior has been noted by
several experimental investigators (Terwilliger and
Dizio [17], Grange et al. [10]. Korber and Schiewe
[18]) in their studies of the freezing characteristics of
salt-water solutions. Unfortunately, in the analysis of
their data they have for the most part followed the lead
of the majority of theoretical investigators who have
modeled finite systems as being semi-finite and have
either assumed that the position of the interface varies
linearly with time [19, 20] or varies with the square
root of time (see Newmann’s similarity development in
Carslaw and Jaeger [6], Tiller [21], Terwilliger and
Dizio [17]). On the basis of the present thermody-
namic treatment of the freezing of aqueous solutions in
finite domains, the assumption of a constant interface
velocity is obviously a grossly incorrect mathematical
approximation. However, comparison of our finite-
domain theoretical results with the semi-infinite do-
main theoretical results of Terwilliger and Dizio [17]
lends some credence to the use of the semi-infinite
domain similarity treatment for the reduction of
experimental data. In Figs. 4 and 5, the logarithm of
the non-dimensional interface position measured with
respect to the initial freezing point §(t) = | — i{t)/!; and
the negative of the non-dimensional interface velocity
T respectively, are plotted versus the logarithm of
the non-dimensional time . A casual inspection of
these curves would lead one to believe that at short
times (f < 0.5), when less than ~ 75°% of the original
solution has solidified, the interface position is pro-
portional to t!'? as the classical semi-infinite domain
similarity solutions would predict. Closer inspection of
these curves, however, would show that while this
approximation would probably be valid within the
usual limits of experimental error. the supposedly

60 ‘! T
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FIG. 3. The time variation (¢ = D%t/I2) of the liquid-solid interface velocity Vust = d[v, - Vi, iV - V,‘x)]/d?
for a supercooled aqueous solution during freezing.
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FIG. 4. The time variation (f = D*/I?} of the liquid—solid interface position (§ = 1 —I/}) for a supercooled
aqueous solution during freezing.
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FIG. 5. The time variation (f = D*t/I?) of the liquid—solid interface velocity (fg = — d[Vs/(V; — V,.)]drfora
supercooled aqueous solution.

constant similarity parameter actually varies by over
100%, within the time interval 10™* <f < 10~ Con-
sequently, experimentalists should be cautious in their
use of the semi-infinite domain similarity approxi-
mation in the reduction of their experimental data.
This is especially true at long times (f > 0.5) when
thermodynamics dictates that for systems of finite
extent the velocity of the moving interface, and hence,
the rate of loss of liquid and growth of solid must
approach zero not necessarily because of heat and
mass transfer considerations but because of equilib-
rium chemical thermodynamic considerations,

HMT. 237D
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SOLUTION ANALYTIQUE GENERALISEE POUR LE GEL D'UNE SOLUTION
AQUEUSE DANS UN DOMAINE FINI

Résumé—On présente une solution générale analytique du probléme du gel unidirectionnel 4 température
constante d’une solution aqueuse. Cette solution est valable pour des solutions diluées ou non et aussi pour
des temps cours ou longs. Des approximations mathématiques sont faites uniquement dans I'idée que la
diffusivité massique est indépendente de la concentration. Les résultats théoriques se comparent favorable-
ment aux résultats expérimentaux d’autres auteurs et ils montrent que les profils de concentration peuvent
exister dans le liquide quand le gel progresse et que les volumes des régions liquide et solide peuvent varier
non linéairement en fonction du temps. Le degré de polarisation de concentration et la vitesse de propagation
de I'interface liquide-solide sont des fonctions du sous-refroidissement initial, de la diffusivité massique et de
la taille initiale du systéme. On compare les résuitats du gel dans des domaines finis aux résultats classiques
dans des domaines semi-infinis.

ALGEMEINE ANALYTISCHE LOSUNG BEIM GEFRIERVORGANG EINER
UNTERKUHLTEN WASSRIGEN LOSUNG FUR EIN ENDLICHES GEBIET

Zusammenfassung—Eine allgemeine analytische Losung des Problems des eindimensionalen ebenen
Gefriervorgangs einer unterkiihlten wiirigen Losung bei konstanter Temperatur mit endlicher Ausdehnung
wird angegeben. Diese Losung ist giiltig sowohl fiir verdiinnte als auch fiir unverdiinnte Losungen fiir kurze
und lange Zeiten. Mathematische Nidherungen wurden unter der Annahme gemacht, dali das Diffusionsver-
mogen von der Konzentration unabhiingig ist. Unsere theoretischen Ergebnisse stimmen sehr gut mit den
experimentellen Resultaten anderer Forscher iiberein und zeigen, dall instationdre ungleichfGrmige
Konzentrationsverliufe innerhalb des Fliissigkeitsgebiets withrend des Gefrierens existieren konnen und dafs
die Volumina der Fliissigkeits- und Feststoffgebiete zeitlich nichtlinear variieren konnen. Der Grad der
Konzentrationspolarisation und die Fortpflanzungsgeschwindigkeit der Phasengrenzfliche ergeben sich als
Funktionen des anfiinglichen Unterkiihlungsgrades, des Diffusionskoeffizienten und der Anfangsgrofe des
Systems. Ein Vergleich zwischen unseren Ergebnissen fiir das Gefrieren in begrenzten Gebieten und der
klassischen Ahnlichkeitslosungen fiir den Gefriervorgang in halbunendlichen Gebieten wurde ebenfalls
angestellt.



Solution for the freezing of a supercooled aqueous solution

OBOBIWEHHOE AHAJIMTUYECKOE PEUWIEHUE 3AJJAUHN 3AMEP3AHHUA
MEPEOXJIAXIEHHOIO BOAHOI'O PACTBOPA B KOHEYHOM OBJIACTH

Aunnorauns — [IpesncTaBneHo 0600UIeHHOEe aHaAHTHYECKOE PellleHHe 3aJa4YH HAalPaBIEHHOrO NJIOCKOro
3aMep3aHHUA IPH TOCTOSHHON TEMIIEPATYpe NEPE0X1aXIeHHOrO BOJHOIO PacTBOPa B KOHEYHOH 001acTH.
Peluenne sBisieTCs CNpaBEeUIMBBIM Kak JUIA pa3baBJIeHHOTO, Tak H AN Hepa3baBJIEHHOro pacTBOPOB,
a Takke LIS MaibiX ¥ OOJBIINX HHTEPBAaJIOB BPeMeHH. MaTeMaTHueCKHE NONYIUEHHS 3aKJIIOYAKOTCH
B TOM, 4TO K03®OHLUMEHT AMPDY3NN pacCMAaTPHBAETCS He 3aBHCILIMM OT KOHUEHTpauuu. Pe3ynbrarthbi
TEOPETHYECKHX PACHETOB XOPOLIO COTJIACYIOTCH C 3KCMEPHMEHTAIBHBIMH JaHHBIMH JApYrux pabor u
CBHACTENBCTBYIOT O TOM, YTO B XHIKOH (a3e B npolecce 3aMep3aHHUs MOIYT HMETb MeECTO He-
CTALIHOHAPHBIE HEONAHOPOJHbIE NMPOGHIH KOHLUEHTPAaLHMH M 4YTO 00bemsl XHAKOH H TBepAOH a3
MOTYT HeJIMHEHHO H3MEHATbCH co BpemeHeM. HaiinmeHo, 4TO mepemaa KOHLUEHTPAaUHMH M CKOPOCTH
pacnpocTpaHeHHs rPaHHUbI pa3jeia (a3 3aBUCAT OT HayaJbHOH CTENMEHH MepeoXJax/ICHHs pacTsopa,
ko3bduunenTa auddy3HH H HavanbHBIX pa3MepoB cHCTeMbl. [lpoBeneHO Takxke cpaBHeHHe MOJY-
4eHHbIX B paboTe pe3ynbTaToB Ay 00BEMa KOHEYHBIX Pa3MEPOB C KJIACCHYECKMMH aBTOMOIE/IbHBIMH
PEWICHHAMH 115 101ybeckoHeYHbIX obiacTei.
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